Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 12(1): 2094, 2021 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-33828093

RESUMEN

The interannual variability of the Asian summer monsoon has significant impacts on Asian society. Advances in climate modelling have enabled us to make useful predictions of the seasonal Asian summer monsoon up to approximately half a year ahead, but long-range predictions remain challenging. Here, using a 52-member large ensemble hindcast experiment spanning 1980-2016, we show that a state-of-the-art climate model can predict the Asian summer monsoon and associated summer tropical cyclone activity more than one year ahead. The key to this long-range prediction is successfully simulating El Niño-Southern Oscillation evolution and realistically representing the subsequent atmosphere-ocean response in the Indian Ocean-western North Pacific in the second boreal summer of the prediction. A large ensemble size is also important for achieving a useful prediction skill, with a margin for further improvement by an even larger ensemble.

2.
Sci Rep ; 10(1): 12671, 2020 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-32728127

RESUMEN

The North Atlantic Oscillation (NAO) is a prominent mode of atmospheric variability that influences weather and climate, including the occurrence of extreme events, over a large part of Europe and Northeastern America. The NAO has been considered to be maintained primarily by migratory weather disturbances and to have a deep structure with no vertical tilt. A careful inspection nonetheless reveals that the associated anomalies do exhibit a subtle vertical tilt, but its dynamical implications are still unknown. Here we show that this vertical tilt is of vital dynamical significance for the wintertime NAO. We find, using atmospheric reanalysis data, that the tilted anomalies transport heat across the pronounced thermal gradient associated with a background westerly jetstream, advecting air from the cooler North America and Greenland to the warmer Atlantic, thereby acting to reinforce NAO's thermal anomalies. The resultant conversion of potential energy from the background state is a larger energy source for maintaining the NAO than the feedback from migratory disturbances. Our findings thus uncover a fundamental mechanism of the NAO dynamics, with implications for the improvement of seasonal predictions for the Euro-Atlantic climate and the representation of the NAO variability in climate models.

3.
Nat Commun ; 11(1): 1903, 2020 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-32313028

RESUMEN

Summer 2019 observations show a rapid resurgence of the Blob-like warm sea surface temperature (SST) anomalies that produced devastating marine impacts in the Northeast Pacific during winter 2013/2014. Unlike the original Blob, Blob 2.0 peaked in the summer, a season when little is known about the physical drivers of such events. We show that Blob 2.0 primarily results from a prolonged weakening of the North Pacific High-Pressure System. This reduces surface winds and decreases evaporative cooling and wind-driven upper ocean mixing. Warmer ocean conditions then reduce low-cloud fraction, reinforcing the marine heatwave through a positive low-cloud feedback. Using an atmospheric model forced with observed SSTs, we also find that remote SST forcing from the central equatorial and, surprisingly, the subtropical North Pacific Ocean contribute to the weakened North Pacific High. Our multi-faceted analysis sheds light on the physical drivers governing the intensity and longevity of summertime North Pacific marine heatwaves.

4.
Nat Commun ; 10(1): 3441, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31371710

RESUMEN

Eurasian continent has experienced cold winters over the past two decades in contrast with Arctic warming. Previous studies have suggested that the cold Eurasian winters are associated with Arctic sea-ice loss, while others attributed them to atmospheric internal variability. However, here we show that the Arctic and Eurasian climate linkage is driven by the combination between atmospheric teleconnection originating in the tropical oceans and Arctic sea ice. Like a battery charges a capacitor, El Niño heats the tropical Atlantic, and the warmer Atlantic condition persists until early winter of El Niño-decay year. We find that the persisting tropical Atlantic warming induces anomalous Rossby wave train arching to Eurasia, leading to Arctic sea-ice increase and Eurasian warming. In La Niña phase these changes are reversed. Our results therefore suggest that the combination of recent tropical Pacific cooling and Arctic sea-ice loss have contributed to the frequent Eurasian cold winters.

5.
Nat Commun ; 9(1): 1724, 2018 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-29712890

RESUMEN

The recent levelling of global mean temperatures after the late 1990s, the so-called global warming hiatus or slowdown, ignited a surge of scientific interest into natural global mean surface temperature variability, observed temperature biases, and climate communication, but many questions remain about how these findings relate to variations in more societally relevant temperature extremes. Here we show that both summertime warm and wintertime cold extreme occurrences increased over land during the so-called hiatus period, and that these increases occurred for distinct reasons. The increase in cold extremes is associated with an atmospheric circulation pattern resembling the warm Arctic-cold continents pattern, whereas the increase in warm extremes is tied to a pattern of sea surface temperatures resembling the Atlantic Multidecadal Oscillation. These findings indicate that large-scale factors responsible for the most societally relevant temperature variations over continents are distinct from those of global mean surface temperature.

6.
Nature ; 501(7467): 403-7, 2013 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-23995690

RESUMEN

Despite the continued increase in atmospheric greenhouse gas concentrations, the annual-mean global temperature has not risen in the twenty-first century, challenging the prevailing view that anthropogenic forcing causes climate warming. Various mechanisms have been proposed for this hiatus in global warming, but their relative importance has not been quantified, hampering observational estimates of climate sensitivity. Here we show that accounting for recent cooling in the eastern equatorial Pacific reconciles climate simulations and observations. We present a novel method of uncovering mechanisms for global temperature change by prescribing, in addition to radiative forcing, the observed history of sea surface temperature over the central to eastern tropical Pacific in a climate model. Although the surface temperature prescription is limited to only 8.2% of the global surface, our model reproduces the annual-mean global temperature remarkably well with correlation coefficient r = 0.97 for 1970-2012 (which includes the current hiatus and a period of accelerated global warming). Moreover, our simulation captures major seasonal and regional characteristics of the hiatus, including the intensified Walker circulation, the winter cooling in northwestern North America and the prolonged drought in the southern USA. Our results show that the current hiatus is part of natural climate variability, tied specifically to a La-Niña-like decadal cooling. Although similar decadal hiatus events may occur in the future, the multi-decadal warming trend is very likely to continue with greenhouse gas increase.


Asunto(s)
Clima , Calentamiento Global/estadística & datos numéricos , Modelos Teóricos , Agua de Mar , Temperatura , Calentamiento Global/historia , Efecto Invernadero/historia , Efecto Invernadero/estadística & datos numéricos , Historia del Siglo XX , Historia del Siglo XXI , Océano Pacífico , Estaciones del Año , Agua de Mar/análisis , Factores de Tiempo
7.
Proc Natl Acad Sci U S A ; 110(19): 7574-9, 2013 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-23610388

RESUMEN

Summer climate in the Northwestern Pacific (NWP) displays large year-to-year variability, affecting densely populated Southeast and East Asia by impacting precipitation, temperature, and tropical cyclones. The Pacific-Japan (PJ) teleconnection pattern provides a crucial link of high predictability from the tropics to East Asia. Using coupled climate model experiments, we show that the PJ pattern is the atmospheric manifestation of an air-sea coupled mode spanning the Indo-NWP warm pool. The PJ pattern forces the Indian Ocean (IO) via a westward propagating atmospheric Rossby wave. In response, IO sea surface temperature feeds back and reinforces the PJ pattern via a tropospheric Kelvin wave. Ocean coupling increases both the amplitude and temporal persistence of the PJ pattern. Cross-correlation of ocean-atmospheric anomalies confirms the coupled nature of this PJIO mode. The ocean-atmosphere feedback explains why the last echoes of El Niño-Southern Oscillation are found in the IO-NWP in the form of the PJIO mode. We demonstrate that the PJIO mode is indeed highly predictable; a characteristic that can enable benefits to society.


Asunto(s)
Clima , Estaciones del Año , Temperatura , Tiempo (Meteorología) , Aire , Geografía , Japón , Modelos Teóricos , Oscilometría , Océano Pacífico , Presión , Análisis de Regresión , Reproducibilidad de los Resultados , Factores de Tiempo , Clima Tropical
8.
Nature ; 491(7424): 439-43, 2012 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-23151588

RESUMEN

Global mean sea surface temperature (SST) has risen steadily over the past century, but the overall pattern contains extensive and often uncertain spatial variations, with potentially important effects on regional precipitation. Observations suggest a slowdown of the zonal atmospheric overturning circulation above the tropical Pacific Ocean (the Walker circulation) over the twentieth century. Although this change has been attributed to a muted hydrological cycle forced by global warming, the effect of SST warming patterns has not been explored and quantified. Here we perform experiments using an atmospheric model, and find that SST warming patterns are the main cause of the weakened Walker circulation over the past six decades (1950-2009). The SST trend reconstructed from bucket-sampled SST and night-time marine surface air temperature features a reduced zonal gradient in the tropical Indo-Pacific Ocean, a change consistent with subsurface temperature observations. Model experiments with this trend pattern robustly simulate the observed changes, including the Walker circulation slowdown and the eastward shift of atmospheric convection from the Indonesian maritime continent to the central tropical Pacific. Our results cannot establish whether the observed changes are due to natural variability or anthropogenic global warming, but they do show that the observed slowdown in the Walker circulation is presumably driven by oceanic rather than atmospheric processes.


Asunto(s)
Movimientos del Aire , Modelos Teóricos , Océanos y Mares , Temperatura , Clima Tropical , Calentamiento Global
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...